科士达UPS电源在中国制造2025里面,动力电池的能量密度目标是350瓦时 /公斤,对应配套的新能源汽车的数量到2020年时预计要100万辆,到2030年时预计200万辆。其背后的重要原因就是把动力电池与新能源革命联系在一起,这给动力电池产业提供了极大的发展前景。
电池的种类很多,常用电池主要是干电池、蓄电池,以及体积小的微型电池。此外,还有金属-空气电池、燃料电池以及其他能量转换电池如太阳电池、温差电池、核电池等。
干电池
常用的一种是碳-锌干电池(图3)。负极是锌做的圆筒,内有氯化铵作为电解质,少量氯化锌、惰性填料及水调成的糊状电解质,正极是四周裹以掺有二氧化锰的糊状电解质的一根碳棒。电极反应是:负极处锌原子成为锌离子(Zn++),释出电子,正极处铵离子(NH?俩得到电子而成为氨气与氢气。用二氧化锰驱除氢气以消除极化。电动势约为1.5伏。
蓄电池
种类很多,共同的特点是可以经历多次充电、放电循环,反复使用。
铅蓄电池
最为常用,其极板是用铅合金制成的格栅,电解液为稀硫酸。两极板均覆盖有硫酸铅。但充电后,正极处极板上硫酸铅转变成二氧化铅,负极处硫酸铅转变成金属铅。放电时,则发生反方向的化学反应。
铅蓄电池的电动势约为2伏,常用串联方式组成6伏或12伏的蓄电池组。电池放电时硫酸浓度减小,可用测电解液比重的方法来判断蓄电池是否需要充电或者充电过程是否可以结束。
科士达UPS电源的优点是放电时电动势较稳定,缺点是比能量(单位重量所蓄电能)小,对环境腐蚀性强。
由正极板群、负极板群、电解液和容器等组成。充电后的正极板是棕褐色的二氧化铅(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质――氢氧化铅〔Pb(OH4〕)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅(PbSO4)。在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。
随着蓄电池的放电,正负极板都受到硫化,同时电解液中的硫酸逐渐减少,而水分增多,从而导致电解液的比重下降在实际使用中,可以通过测定电解液的比重来确定蓄电池的放电程度。在正常使用情况下,铅蓄电池不宜放电过度,否则将使和活性物质混在一起的细小硫酸铅晶体结成较大的体,这不仅增加了极板的电阻,而且在充电时很难使它再还原,直接影响蓄池的容量和寿命。铅蓄电池充电是放电的逆过程。
铅蓄电池的工作电压平稳、使用温度及使用电流范围宽、能充放电数百个循环、贮存性能好(尤其适于干式荷电贮存)、造价较低,因而应用广泛。采用新型铅合金,可改进铅蓄电池的性能。如用铅钙合金作板栅,能保证铅蓄电池最小的浮充电流、减少添水量和延长其使用寿命;采用铅锂合金铸造正板栅,则可减少自放电和满足密封的需要。此外,开口式铅蓄电池要逐步改为密封式,并发展防酸、防爆式和消氢式铅蓄电池。
铅晶蓄电池
铅晶蓄电池应用的是专有技术,所采用的高导硅酸盐电解质是传统铅酸电池电解质的复杂性改型,无酸雾内化成工艺是定型工艺的革新。这些技术工艺均属国内外首创,该产品在生产、使用及废弃物中都不存在污染问题,更符合环保要求,由于铅晶蓄电池用硅酸盐取代硫酸液作电解质,从而克服了铅酸电池使用寿命短,不能大电流充放电的一系列缺点,更加符合动力电池的必备条件,铅晶电池也必将对动力电池领域产生巨大的推动作用。
那么什么是动力锂电池呢,度娘的解释是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池,当前可分为两类:锂金属电池和锂离子电池。其中锂离子电池不含有金属态的锂,并且是可以充电的,可极大的可满足消费类需求,至此,锂电池逐渐被人们所重视。
一、前言
随着计算机的越来越普及,与之配套的UPS使用也越来越广泛,而传统的UPS系统中由于采用工频逆变,UPS中有工频变压器,体积比较庞大,而采用高频方式后,缩小了体积,降低了波形失真度,同时,由于高频UPS可以采用模块化设计,扩容非常方便,因此得到越来越广泛的应用。
二、高频环节DC/AC变换方式
2、1高频环节DC/AC变换方式的比较
高频环节DC/AC变换方式有多种,如图(一)所示6种方式。
图(一)高频环节DC/AC变换方式
图中,HF(HighFrequency)为高频,PWM(PulseWidthModulation)为脉宽调制,REC(Rectifier)为整流器,INV(1nverter)为逆变器,CYC(CycleConverter)为循环换流器LCINV(LineCommutatedInverter)为电源换流器,RINV(ResonantInverter)为谐振逆变器,PCCYC(PhaseControlledCycleConverter)为相控循环换流器。第一和第二种方式的中间都有直流环节,功率由DC到AC单向传送。第一种方式是高频逆变器输出电压经整流变为直流,再由高额PWM逆变器变为正弦被输出电压的方式,从负载看.它具有电压变换器的特性。为此,第一种变换是适用于UPS的一种实用方式。
第二种是用整流器、电抗器把高频PWM逆变器的输出电压变为市电倍频的直流脉动电流,再经负载换流型逆变器变为工频交流电流,供给负载。它显然具有电流变换器的特性。可作为太阳能发电系统的变换器。
另外几种是中间没有直流环节的电路方式,都是用循环换流器把由逆变器产生的高频交流直接变换为工频交流,因此,它具有功率变换级数少,变换效率高的特点。第三种和第四种的高额逆变器采用谐振逆变器、减轻开关元件的负担,ZMI噪声也较小。在第三种变换中利用循环换流器的输入短路方式限制输出,从而控制输出电压波形。第四种由RINV1和RINV2的电压合成使输出为正弦波形,正弦波的幅度与频率由RINV1和RINV2的频率及其差值确定。第五种和第六中变换的高频逆变器及循环换流器都容易进行双向功率传送。第五种变换由高原逆变器的PWM的方式控制输出电压的波形频率与幅度,它与第一种方式一样,也是适用于UPS的一种实用方式。第六中是控制逆变器与循环换流器对应的开关间的动作相位,由循环换流器获得交流PWM输出电压。
对于以上高频环节DC/AC变换的各种方式,要根据应用系统进行选用,适用于UPS的是第一种、第五种和第六中变换方式,但已经真正应用于生产的是第一种和第五种变换方式。
2、2高原环节变换方式UPS的持征
高额环节变换方式UPS有如图(二)(方式I)和如图(三)(方式II)所示两种。用晶闸管
图(二)高频环节变换方式的UPS(方式I)
图(三)高频环节变换方式的UPS(方式II)
整流器对输入交流电压进行整流,从而获得稳定的电压,并对蓄电池浮充充电。AC/DC变换电路采用以下两种方式:―是用二极管整流器把交流变为直流,再经降压斩波器恒定控制直流电压的方式;二是不恒定控制直流电压,用晶闸管开关把蓄电池接到直流线路上的方式。图(二)是用第一种高频环节DC/AC变换方式的UPS系统(方式1)的结构。这种结构有利于小型轻量化,但由于UPS内部压降与功率变换使损耗增大。
由于中间接入直流环节,高频逆变器与PWM逆变器的换流与输出电压的控制可分别进行。另外,高额变压器的漏感与布线的分布电感中蓄积的能量容易处理,设计上方便简单。
如图(三)所示是采用第五种的DC/AC变换方式的UPS(方式II)系统结构。它是把高频电压直接变换为工频电压,因此,更利于小型轻量化.而内部电压降与功率损耗比方式I小。然而,循环换流器的换流与逆变器是分别处理的,对于高额变压器漏感与布线分布电感在换流时蓄积的能量要进行必要的处理,因此,设计上比较麻烦。
我们先来瞅瞅锂电池的发展进程:
1、1970年代埃克森的M.S.Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。
2、1980年,J. Goodenough 发现钴酸锂可以作为锂离子电池正极材料。
3、1982年伊利诺伊理工大学的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆。与此同时,采用金属锂制成的锂电池,其安全隐患备受关注,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。首个可用的锂离子石墨电极由贝尔实验室试制成功。
4、1983年M.Thackeray、J.Goodenough等人发现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。
5、1989年,A.Manthiram和J.Goodenough发现采用聚合阴离子的正极将产生更高的电压。
6、1991年索尼公司发布首个商用锂离子电池。随后,锂离子电池革新了消费电子产品的面貌。
7、1996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸锂铁,比传统的正极材料更具优越性,因此已成为当前主流的正极材料。
1998年至今,业界把锂离子电池也称为锂电池,但这两种电池是不一样的。锂离子电池已经成为了业界主流。
既然成为了主流,锂电池的产业链是如何呢?不难发现,锂电池上游是锂电池材料所需的矿产资源,中游为锂电池生产厂商,包括正极材料、负极材料、电解液、隔膜、导电剂和粘合剂的生产等,下游主要是锂电配套应用领域,目前已广泛用于消费类电子产品、电动汽车、工业储能。
为了将锂电池行业全产业链分析清楚,再来了解一下锂电池生产工艺流程:
据行业人士介绍,一辆电动车的三种原料消费量:45千克碳酸锂、11千克钴、50千克石墨。以特斯拉ModelS为例,测算了电动车中三种主要金属元素的含量,同时按电动车年销量增长100万辆为基准,做原材料的消费增量敏感性分析,可得出碳酸锂消费增量4.5万吨,现消费量14万吨/年;钴消费增量1.1万吨, 现消费量8万吨/年;石墨消费增量5万吨,消费量巨大但无准确数字。
对于本例,假设负载率为30%时,工频机的效率约为80%,而高频机可以达到90%。根据式(11),两者的损耗分别为
这些由UPS损耗造成的热量必须由制冷系统排出,假设空调能耗比为3:1,即每3kW的热量需要由1kW的制冷功率来排出。则两套UPS的电力损耗分别增至32kW和14.23kW。假设电费成本为1元/kWh,每年两套UPS的电力损耗成本分别为280320元和124654.8元,即高频机比工频机每年节省电费155665.2元。
综上所述,同等容量的高频机要比工频机更节能,在负载率低的情况下节能效果更加显著。
4 结束语
UPS系统的能耗降低可以提高供电系统的效率,降低整个数据中心的电力使用效率PUE,有助于建设更加绿色高效的数据中心。