返回主站|会员中心|保存桌面
普通会员

北京金业顺达 有限公司

蓄电池 UPS电源 EPS电源 精密空调 直流屏

新闻分类
站内搜索
 
友情链接
首页 > 新闻中心 > 南京科士达UPS电源总代理
新闻中心
南京科士达UPS电源总代理
发布时间:2016-09-07        浏览次数:1        返回列表
 南京科士达UPS电源总代理

科士达UPS电源系统在保障负载用电、改善电能质量、防止电网对负载造成的危害等方面起着十分重要的作用。分析UPS系统的能耗时,应考虑UPS的效率与负载率的关系,还应考虑隔离变压器、滤波器等辅助设备对UPS系统效率的影响。文中对高频机型UPS在数据中心节能方面的优势做了分析。

  不同的UPS由于采用不同的拓扑或技术,在系统配置上有很大差别。例如采用IGBT整流的UPS,不需要增加滤波装置就可以满足系统要求。而采用6脉冲整流的UPS,为满足系统要求必须配置滤波器;高频机型UPS(本文简称“高频机”)不需要增加输出变压器就可以满足供电电压要求,而工频机型UPS(本文简称“工频机”)必须增加输出变压器才能满足电压要求。因此,在分析UPS系统效率时,应考虑包括其辅助设备(如滤波器、隔离变压器等)在内的UPS整体系统效率。

  2 UPS基本科士达UPS电源原理与结构

  UPS可以分为工频机和高频机。传统的工频机由SCR整流器、IGBT逆变器和输出变压器组成,如图1所示。由于整流器采用的SCR整流技术属于降压整流,造成UPS的输出电压低于输入电压,必须在输出端配备升压变压器才能满足输出电压的要求。

  高频机逆变器所用IGBT额定电压要比工频机高一倍,但两者的IGBT与二极管的门槛电压、等效通态电阻相差不大;此外由于工频机直流母线Ud较低,需要用输出变压器将逆变器输出电压升压至380V,而高频机的逆变器直连输出,因此工频机逆变器输出电流要比高频机大。由式(7)和式(9)可见,工频机逆变器的通态损耗比高频机要高,据测算要增加90%~150%。

  由于工频机整流器采用不控器件二极管或半控器件晶闸管进行整流,直流母线电压范围较宽,逆变器难以一直工作在最优点;而高频机采用全控器件IGBT整流,直流母线电压基本保持不变,逆变器工作在其设计的最优点,从而提高了逆变器的效率。

  UPS是数据中心的重要基础设施之一,其能耗的降低对数据中心整个生命期内总拥有成本TCO有重要作用。通过前面的分析可知,高频机造成的能耗要比工频机小,最主要的因素是变压器损耗,由于变压器有较大的空载损耗,造成工频机的空载损耗较大,即在较低的负载率时效率不高,能耗较大。

  举例来说,两套320kW的UPS,系统架构均为2+1,分别为工频机和高频机。虽然两者公布的效率满载时都在90%以上,但N+1架构的UPS不会运行在100%负载情况下。根据GB50174-2008《电子信息机房设计规范》,UPS单机负载率不能超过83.3%,在2+1配置下,UPS负载率不会超过55.53%。UPS的损耗可以根据下式来计算

11)

  式中,Ploss为有功功率损耗;PN为UPS额定有功功率;S为负载率;η为UPS效率。

电池的主要性能包括额定容量、额定电压、充放电速率、阻抗、寿命和自放电率。

额定容量

在设计规定的条件(如温度、放电率、终止电压等)下,电池应能放出的最低容量,单位为安培小时,以符号C表示。容量受放电率的影响较大,所以常在字母C的右下角以阿拉伯数字标明放电率,如C20=50,表明在20时率下的容量为50安?小时。电池的理论容量可根据电池反应式中电极活性物质的用量和按法拉第定律计算的活性物质的电化学当量精确求出。由于电池中可能发生的副反应以及设计时的特殊需要,电池的实际容量往往低于理论容量。

额定电压

电池在常温下的典型工作电压,又称标称电压。它是选用不同种类电池时的参考。电池的实际工作电压随不同使用条件而异。电池的开路电压等于正、负电极的平衡电极电势之差。它只与电极活性物质的种类有关,而与活性物质的数量无关。电池电压本质上是直流电压,但在某些特殊条件下,电极反应所引起的金属晶体或某些成相膜的相变会造成电压的微小波动,这种现象称为噪声。波动的幅度很小但频率范围很宽,故可与电路中自激噪声相区别。

充放电速率

有时率和倍率两种表示法。时率是以充放电时间表示的充放电速率,数值上等于电池的额定容量(安?小时)除以规定的充放电电流(安)所得的小时数。倍率是充放电速率的另一种表示法,其数值为时率的倒数。原电池的放电速率是以经某一固定电阻放电到终止电压的时间来表示。放电速率对电池性能的影响较大。

阻抗

电池内具有很大的电极-电解质界面面积,故可将电池等效为一大电容与小电阻、电感的串联回路。但实际情况复杂得多,尤其是电池的阻抗随时间和直流电平而变化,所测得的阻抗只对具体的测量状态有效。

寿命

储存寿命指从电池制成到开始使用之间允许存放的最长时间,以年为单位。包括储存期和使用期在内的总期限称电池的有效期。储存电池的寿命有干储存寿命和湿储存寿命之分。循环寿命是蓄电池在满足规定条件下所能达到的最大充放电循环次数。在规定循环寿命时必须同时规定充放电循环试验的制度,包括充放电速率、放电深度和环境温度范围等。

自放电率

电池在存放过程中电容量自行损失的速率。用单位储存时间内自放电损失的容量占储存前容量的百分数表示。


化学电池


  化学电池,是指通过电化学反应,把正极、负极活性物质的化学能,转化为电能的一类装置。经过长期的研究、发展,化学电池迎来了品种繁多,应用广泛的局面。大到一座建筑方能容纳得下的巨大装置,小到以毫米计的品种。无时无刻不在为我们的美好生活服务。现代电子技术的发展,对化学电池提出了很高的要求。每一次化学电池技术的突破,都带来了电子设备革命性的发展。现代社会的人们,每天的日常生活中,越来越离不开化学电池了。现在世界上很多电化学科学家,把兴趣集中在做为电动汽车动力的化学电池领域。

 干电池和液体电池

干电池和液体电池的区分仅限于早期电池发展的那段时期。最早的电池由装满电解液的玻璃容器和两个电极组成。后来推出了以糊状电解液为基础的电池,也称做干电池。
现在仍然有“液体”电池。一般是体积非常庞大的品种。如那些做为不间断电源的大型固定型
铅酸蓄电池或与太阳能电池配套使用的铅酸蓄电池。对于移动设备,有些使用的是全密封,免维护的铅酸蓄电池,这类电池已经成功使用了许多年,其中的电解液硫酸是由硅凝胶固定或被玻璃纤维隔板吸付的。

 都说安全是动力电池的命根儿,最近在思考电池系统由内而外起火的原因分析,这里主要是考虑一层层原因往前去推,然后考虑将以前和未来的事故都放进去进行匹配,再根据各个车型的实际设计推测未来出事故的PPM(百万分率)。 下文把所有厂家的名字都去掉了,探讨这个话题并不针对任何企业,不做评判。

  这是从假定单个出问题,再扩展到全局的实验维度,从图中可以看出:

  避免二次伤害,锂电池起火的4大诱因

  整个分析只是为了匹配电池系统着火这个极端事件产生的,我们就区隔出由机械滥用的内容,电池系统的设计基础是着眼于放在一个车辆比较安全的位置,防止在车辆使用过程中出现问题,整个机械设计固然是目前大量做针刺、挤压等实验安全性的内容,但实际上由机械滥用引起的问题反而成为大家容易解决的问题。

  避免二次伤害,锂电池起火的4大诱因

  以特斯拉的三起事故为例:

  1.在美国田纳西州士麦那起火燃烧,这辆电动车冲向掉落路面的拖车挂钩,底盘碰撞后发生火灾。

  2.驾驶者在转弯时撞上、并穿过了了一座水泥墙,最终撞在一棵树上停了下来,起火。

  3.在西雅图车主称撞上了路中的金属残片,因此他离开了高速公路。车子失效后,他又闻到了燃烧的味道,车辆此时着火燃烧。

  这种机械上的设计也显得简单,在结构外围和底盖考虑更多的防护,即可取得立竿见影的效果。

  我们把本年发生的事情,把厂家去掉,可以再思考一下车起火是电池还是电池之外?很大一部分是电池之外的负载,线缆过热导致外围部分被点燃的事更多些。

  这里我们可以分基本的三层,着火的本质原因:

  1.电池内的未按照设计意图的热能释放+内外燃烧物

  2.电池内的可燃气体释放+燃点

  3.电池内的可燃液体释放+燃点:此处主要包括电解液泄漏和冷却液泄漏两部分。

  我们可以对电池系统的热能释放来考虑:

  1.电池包或电池单体过充

  过充一般而言确实是热能释放比较普遍的原因,电池包级热失控事件,可以往下细分为多电池(模组、单体过充),电池过充和电解液蒸发过热,还有就是电池剩余容量(SOC)计算错误引起的过充,高SOC状态下,未按照保护而进行能量回收引起的,以及充电控制程序卡住引起的过充。

  2 短路过流的人热能释放

  电池包/高压电路故障导致短路,散发热量。主要是由电池包内部短路和外部短路,引起导体和连接器过热、单体过热引发随后的热事件,进一步细分也可以分解成模组的短路引发的部件过热。例如模组一级的短路、电池组内一级短路、外围腐蚀性/导电液体进入引起的短路。

  3 高连接阻抗的发热

  电池包/高压电路的故障,导致充放电回路中出现高阻值的位置,电流在这一高阻点的温度上升,可能导致了相邻材料的着火和后续的热量传播。干路连接点接触不良、腐蚀引起发热。

  4.电池的内阻提升和内部出现过热

  单体排气产生可燃性气体,随后的热源(电弧,单体热失控)导致电池系统的多余热能。单体单点故障热失控界定实验,可以考虑单个单体扩展到整体方面的,在既定的条件下,将实现每个电池包备案交底,有些参考作用,但实验的条件与故障的发生不大可能完全吻合。

  避免二次伤害,锂电池起火的4大诱因

  案例回顾

  实际上起火的事故都是交织在一起的:

电池的理论充电时间

电池的理论充电时间:电池的电量除以充电器的输出电流。
例如:以一块电量为800MAH的电池为例,充电器的输出电流为500MA那么充电时间就等于800MAH/500MA=1.6小时,当充电器显示充电完成后,最好还要给电池大约半个小时左右的补电时间。

燃料电池

燃料电池是一种将燃料的化学能透过电化学反应直接转化成电能的装置燃料电池是利用氢气在阳极进行的是氧化反应,将氢气氧化成氢离子,而氧气在阴极进行还原反应,与由阳极传来的氢离子结合生成水。氧化还原反应过程中就可以产生电流。燃料电池的技术包括了出现碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)、熔融碳酸盐燃料电池(MCFC)、固态氧化物燃料电池(SOFC),以及直接甲醇燃料电池(DMFC)等,而其中,利用甲醇氧化反应作为正极反应的燃料电池技术,更是被业界所看好而积极发展。

  小结:

  1.起火是个很极端的事情,但是曝光度很高,大家第一反应都是电池系统的事情,从各种分析来看,从电池系统着火起来的事,必定有故障发生,而且有热量集聚引燃。

  2.如果把更多公开的信息汇总在一起,再拆解对比,完善系统分析过程还是可以达成一些共识避免很多未来的着火事故。

销售:王浩
电话:18001283863
微信:xinzhong959563688
BB蓄电池: www.bbdianchiwang.com